Paraplegic fitted with exoskeleton to take first kick of World Cup in Brazil

Researchers hope that mind-controlled exoskeleton will allow patients to walk and one day make museum pieces of wheelchairs

PUBLISHED : Wednesday, 02 April, 2014, 8:44pm
UPDATED : Thursday, 03 April, 2014, 4:48am

Shortly before 5pm local time on June 12 at Arena Corinthians in Sao Paulo, a young paraplegic Brazilian will stand up from a wheelchair, walk over to midfield and take the first kick of the 2014 soccer World Cup.

For those hoping for miracles at football's greatest tournament, the scene may be the closest they get to witnessing one. For Miguel Nicolelis, a neuroengineer based at Duke University in North Carolina, the moment demands faith of another kind. As hundreds of millions tune in for the opening match, they will see the first public demonstration of technology he claims will turn wheelchairs into museum pieces.

The technology in question is a mind-controlled robotic exoskeleton. The complex and conspicuous robotic suit, built from lightweight alloys and powered by hydraulics, has a simple enough function. When a paraplegic person straps themselves in, the machine does the job that their leg muscles no longer can.

The exoskeleton is the culmination of years of work by an international team of scientists and engineers on the Walk Again project. It was built by Gordon Cheng at the Technical University in Munich. Nicolelis' team focused on ways to read people's brain waves, and use those signals to control robotic limbs.

On Tuesday, the team launched a Facebook page to document the project in the days leading up to the World Cup. A dedicated website is due to go live later this week.

Nicolelis is training nine paraplegic men and women, aged 20 to 40, to use the exoskeleton at a neurorobotics rehabilitation lab in Sao Paulo. Three will be chosen to attend the opening game between Brazil and Croatia, with one volunteer heading on to the pitch to perform the demonstration.

To operate the exoskeleton, the person is helped into the suit and given a cap to wear that is fitted with electrodes to pick up their brain waves. These signals are passed to a computer worn in a backpack, where they are decoded and used to move hydraulic drivers on the suit.

The exoskeleton is powered by a battery - also carried in the backpack - that allows for two hours of continuous use.

"The movements are very smooth," Nicolelis said. "They are human movements, not robotic movements."

Nicolelis says that in trials so far, his patients seem to have taken to the exoskeleton. "This thing was made for me," one patient told him after being strapped into the suit.

The operator's feet rest on plates which have sensors to detect when contact is made with the ground. With each footfall, a signal shoots up to a vibrating device sewn into the forearm of the wearer's shirt. The device seems to fool the brain into thinking that the sensation came from their foot. In virtual reality simulations, patients felt that their legs were moving and touching something.

One patient, whose spinal injury meant he could not feel or move his legs, told Nicolelis: "I feel like I'm walking on the beach, that I'm touching the sand."

Nicolelis likens the effect to the rubber hand illusion, where the mind is tricked into thinking that an inanimate object is part of the person. "It confirms our prediction that we are going to elicit a sensation that the exoskeleton is an extension of their body," Nicolelis said.

Nicolelis said he believed the technology was ripe for turning into everyday devices to help paraplegics and could ultimately replace wheelchairs.

"All of the innovations we're putting together for this exoskeleton have in mind the goal of transforming it into something that can be used by patients who suffer from a variety of diseases and injuries that cause paralysis," he said.

The system has been through numerous safety tests. The exoskeleton is fitted with multiple gyros to stop it falling over during the balancing act of bipedal walking. As an extra safety measure, it was fitted with multiple airbags.

Last month, Nicolelis and his colleagues went to football matches in Sao Paulo to check whether mobile phone radiation from the crowds might interfere with the suit. Electromagnetic waves could make the exoskeleton misbehave, but the tests were encouraging. The chances of the exoskeleton malfunctioning are apparently slim.


Send to a friend

To forward this article using your default email client (e.g. Outlook), click here.

Enter multiple addresses separated by commas(,)