Silhouette of 'super earth' detected for first time using ground-based telescope

PUBLISHED : Sunday, 07 December, 2014, 7:43am
UPDATED : Sunday, 07 December, 2014, 7:43am

Astronomers have detected the silhouette of a planet just twice the diameter of earth using ground-based telescopes. It is the smallest planet detected with the technique and raises hopes that it could be used to search for earth-sized worlds capable of supporting life.

The "super-earth", known as 55 Cancri e, orbits a relatively nearby sun-like star 41 light years away. As the planet passes in front of the star, it blocks a tiny fraction of the light.

Dr Ernst de Mooij, of Queen's University Belfast in Northern Ireland, and his colleagues discovered that for the two hours when the planet was between us and the star, the light coming from the star dropped by 0.05 per cent of its usual intensity.

Until now, such a minuscule reduction has only been measurable from space, where the lack of atmosphere allows spacecraft to take more precise readings.

"We are really pushing these techniques to the limit from the ground," said de Mooji, who used the 2.5-metre Nordic Optical Telescope, on the island of La Palma, Spain, to make the detection.

55 Cancri e was discovered in 2004. It is the innermost of five planets known to circle the star and has eight times the mass of earth. It takes just 18 hours to circle its parent star and is thought to have an atmosphere. The astronomers are now attempting to detect water there.

When the planet is in front of the star, light must pass through its fringe of atmosphere where water vapour and other molecules will absorb it, causing the starlight to dim more at certain wavelengths than others.

Liquid water is a key requirement for life and would be a marker of a planet's habitability. 55 Cancri e is unlikely to be habitable: it is so close to its parent star that its temperature is 1,700 degrees Celsius, meaning that any water will be in the form of steam. But this technique could be widely applied in the coming years.

Astronomers expect to discover many super-earth and earth-sized worlds in the next five years using two new space telescopes. Tess (Transiting Exoplanet Survey Satellite) is a Nasa mission and Cheops (Characterising Exoplanet Satellite) is a European Space Agency mission. Both launch in 2017.

Once found, these planets will be analysed for chemical composition and habitability. Making the technique viable from the ground would speed up the search for habitable planets.

"The concept that you can follow up Tess discoveries from the ground is exciting," said Hugh Jones, astronomer at the University of Hertfordshire in England.

Until now, it was thought that expensive follow-on space telescopes would be needed.

"There are many more telescopes on the ground with a wide variety of instruments than in space, so this is a huge advantage," said Ray Jayawardhana, professor of astronomy at York University in Toronto, Canada.

The Nordic Optical Telescope used in the present study is of modest size and raises the possibility of using larger ones to analyse smaller planets. "With a large telescope we should be able to push down to detect earth-sized worlds," said de Mooji.